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The authors theoretically investigate the absorption of radiation in a blown 
layer. 

References [1-6] investigated the screening of surfaces of bodies washed by a gas flow 
from external radiation with the aid of blowing of a foreign gas from their surfaces. Re- 
ferences [1-4] studied flow over a flat plate at zero angle of attack of near supersonic 
gas, with low-level blowing of gaseous SF 6 into the boundary layer (radiation at ~ = 10.6 um 
falls normally on the plate). Reference [4] presented results of solving a model problem 
associated with hypersonic flow over a wedge. Reference [6] investigated the interaction 
of monochromatic radiation with the layer of absorbing gas blown from the surface of a blun- 
ted body. 

The present paper considers screening of the surface of a blunt body from monochromatic 
radiation of X = 10.6 ~m with the aid of strong blowing of SF~. We seek a solution in the 
vicinity of the stagnation stream line about an axisymmetric body where, as shown in [6], 
the radiative flux distribution at the wall has a maximum. We give the appropriate equations, 
describe the numerical solution, show the results, and propose an approximate method of 
solving this problem. 

I. We consider axisymmetric flow about a blunt body of revolution washed by hypersonic 
flow of a gas, with strong blowing of a foreign gas from its surface [6-8]. On the shock 
wave surface falls monochromatic radiation parallel to the body symmetry axis of such a 
wavelength that the shock layer is optically transparent and, conversely, the blown gas is 
a good absorber. 

The thermal radiation from the hot part of the shock layer is small compared with the 
monochromatic radiation. In the mathematical description of the flow the boundary layer be- 
tween the blown gas and the external flow is replaced by a contact surface. The flow in 
the blown layer is equilibrium and inviscid. We consider that the gas temperature increase 
in the blown layer due to radiation absorption is moderate, and therefore all the flow para- 
meters [6] are of the same order as in the absence of radiation [6-9]. 

We investigate the flow region near the stagnation line x2/~ ~ i (x = 0 corresponds to 
the body stagnation point). From the fact that the radiation is parallel to V~, that there 
is no reradiation or reflection from the wall, and bearing in mind the considerations pre- 
sented in [6] and the fact that both terms of the continuity equation are of the same order, 
we can write a system of equations for the flow in the blown layer: 

0 ( p u r v _ l ) + @ y  (ovrV_l)=O ' 
ax 

Ou Ou Op Ov Ov 
p u - - - ~ x @ p v - -  - -  , pu - - } - p v ~  

Oy ax & og 

Oh Oh 
p u  + p v  - -  

Og 
01 

. . . .  kl, p = pRgT, 
ag 

Op 
7 

ag 

1 a (qyrV-1), ( 1 ) 
r v-I dy 

T 

q~=Icos~(x), h---- IcP(k) d~" 
0 

M. V. Lomonosov Moscow State University. Translated from Inzhenerno-Fizicheskii Zhurnal? 
Vol. 52, No. 4, pp. 540-547, April, 1987. Original article submitted March ii, 1986. 

0022-0841/87/5204-0385512.50 O 1987 Plenum Publishing Corporation 385 



-,/O~ 

Fig. 1 

i O/~: 

e, ~ 

~.fO e 

Fig. 2 

O,95 

0,z5 

Fig. I. Distribution of the parameters in the blown layer for 
Iq~l = 1 . 9 o 8 " 1 o ~  w/m=, o~ = 0 .74  kg/m 3, V~ = 2 . 1 0  3 m / s e c ,  W = 1, 

R e = 0 .1  m, T~ = 300~ 1) I o ( ~ ) ;  2) To(~) ;  3) u ~ ( ~ ) ;  4) f o ( ~ ) .  

Fig. 2. Standoff distance of the contact surface and location of 
the absorption zone: i) 6 (numerical computation); 2) A/6 (nu- 
merical computation); 3) 6 (approximate method). The quantity 
[q~] = W/m 2. 

TABLE I. Influence of T w and W on the Radiant Flux 
at the Body Surface (p~ = 0.74 kg/m a, V~ = 2-103 m/ 
sec, R c = 0.i m, lq~l = 1"908"109 W/m2) 

~ -  qw/Iq~l 
W, Tw = 300 K 

Tw/3OO K, W =  1 
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1,0 
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1,45 

0,83 

0,6 
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Taking into account that p z o~V~ (I - ~2 + ...), x = x/R c, setting the coordinate y = 
0 to be the corresponding body surface, and following reasoning analogous to that in [I0], 
we seek a solution of the system (i) in the form 

poe 
= ~ (~o (~) + ~ (~) ~ (;) + . .  3, v = ~o~v~ (fo (~) + v (~) f~ (r + . . . ) ,  

r = R e ( ~ - ~ . . . ) ,  I = - - 1 " ( l o + . . . ) ,  h = h * ( h o + . . . ) ,  

u = (oV~x(ua (~) + . . . ) ,  ~ = y/aR e, p = o=V% (Po (~) --xZP2 (;) @ . . . ) .  

(2) 

Here ~R c is the displacement thickness at the Stagnation line. Since the form of the solu- 
tion of Eq. (2) was chosen in accordance with the boundary Conditions on the body Pvlw = 
Pw(x)Vw(x), Tlw = Tw(x), Ulw = 0 and at the contact surface llc = Ic(x), Plc = Pc(~), then, 
taking_into flccount that the distribution of Tw(x) and Ow(x)Vw(x) is such that R(x) ~ ~2 
and_V(x) ~ x 2, substituting Eq. (2) into Eq. (i) and equating terms with the same powers 
of x, we obtain: 

po - -  - ~Ou (~) fo (~) fo (~), po = ropo, 

2 (0 

p~ ---- [I, Io ---- Tok (Po, To)Io, "% ---- k*SRc, 

2h* 2q* 
v ~ r  Po(~) f0 (~)h'(~) = I0 (~), r = 

pooV~o 

(3) 
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The spreading out of the blown gas occurs near the contact surface, and therefore the 

constant describing the pressure drop along the body surface may be taken equal to ~ = p=(1). 
In turn p2(1) is equal to the analogous quantity on the other side of the contact surface 

[i0]: 6 = (v  + 2 ) / ( v  + 1 ) .  

The boundary conditions convert to the following: 

~=0,  u l = 0 ,  T o : l ,  Polo=W; ~ = I ,  p o = l  e - - - - ,  e = p~fo~ ,  fo = O, lo  = 1.  ( 4 )  
2 

We note that for the five differential equations of the system (2) we have the six con- 
ditions (4), so that we can determine the unknown thickness of the blown layer. 

2. In the radiation absent case the flow into the blown layer is described by the sys- 
tem of equations (3) in which we must replace the equations of radiative transfer and of 
energy by the conditions I 0 = 0, T o = I. In addition, in Eq. (4) we omit the corresponding 
boundary conditions. Estimates show that for M 2 ~ i (M is the Mach number) we may assume, 
as was done in [7, 8, i0], that p = const. Then for v = 2, taking into account that f0(1) = 
0, we write 

c, ( 2 6  12 2 26 A, fo = ~ (~ - -  c,) z -  AZ l--i- cl 
\ co / cl c ~ - - 1  03 

p o = l  e 032P~ f~, u~ = a g - - c ~  A =  (21~ 1 ~/2 
2 2 1 - -  c2 ' . 9o / 

(5) 

In determining 6 and c 2 we obtain two solutions. One of these has no physical meaning 
(6 + ~, u1(0) + A), and the other is expressed in the form 

u, (0) 6 = 03[0 (0) (6 )  
C 2 = , �9 

u~ (0) - -  A A --[- ux (0) 

Here we used the boundary conditions ull~= 0 = U l ( O ) ,  f01<=0 = W/p0- We note that the solu- 
tion of Eqs. (5) and (6) coincides with the results of [7] for u1(0) = 0 and of [8] for 
u~(0)  > 0. 

3. To c a l c u l a t e  t h e  i n f l u e n c e  o f  r a d i a t i o n  on t h e  f l o w  in  t h e  blown l a y e r  we mus t  nu-  
m e r i c a l l y  s o l v e  t h e  s y s t e m  o f  e q u a t i o n s  ( 3 ) ,  wh ich  i s  c o m p l i c a t e d  by t h e  p r e s e n c e  o f  c o n d i -  
t i o n s  (4 )  a t  o p p o s i t e  ends  o f  t h e  i n t e r v a l  ~ = [0 ,  1 ] .  I n  t h i s  p a p e r  we u s e  ~ = 0 a t  one 
end o f  t h e  i n t e r v a l  o f  i n t e g r a t i o n ,  b e s i d e s  t h e  b o u n d a r y  c o n d i t i o n s  a s s i g n e d  t h e r e  u 1 = 0, 
T o = 1, p0f0  = W, t h e  a p p r o x i m a t e  v a l u e s  p 0 ( 0 ) ,  I 0 ( 0 ) ,  and  a l s o  6 w i t h  s u b s e q u e n t  i m p r o v e -  
ment  by i t e r a t i o n s .  B e c a u s e  o f  t h e  s t r o n g  i n f l u e n c e  o f  t h e  q u a n t i t i e s  p 0 ( 0 ) ,  I 0 ( 0 ) ,  6 on 
t h e  s o l u t i o n  we had  t o  a r r a n g e  t h r e e  i t e r a t i o n s  o f  t h e  p r o c e s s ,  embedded one  w i t h i n  t h e  
o t h e r ,  i n  wh ich  we f i r s t  d e t e r m i n e d  6, t h e n  P0 and f i n a l l y  I 0. We s h o u l d  e m p h a s i z e  t h a t  
w i t h o u t  embedd ing  t h e  i t e r a t i o n  p r o c e s s e s  t h e r e  was no c o n v e r g e n c e .  

4.  As was shown in  [ 6 ] ,  g a s e o u s  SF 6 s a t i s f i e s  a l l  t h e  c o n d i t i o n s  u s e d  in  Sec .  1 i n  
d e r i v i n g  t h e  e q u a t i o n s .  I n  a d d i t i o n ,  t h e  a b s o r p t i o n  c o e f f i c i e n t  h a s  t h e  f o r m  [ 1 ] :  

k = k ' k ,  k* = p~V~T*C*,  C* = 10 -5  see2/(kg.K), 

k =  a l p ( b - -  T), al = 0,9653, b = 5,64.10z/0,985 T*. 

F o r  T > b t h e  a b s o r p t i o n  i s  c u r t a i l e d  and t h e  gas  becomes  t r a n s p a r e n t  f o r  r a d i a t i o n  
o f  w a v e l e n g t h  X = 10 .6  ~m, and t h i s  means t h a t  t h e  blown l a y e r  can  be d i v i d e d  i n t o  two s u b -  
l a y e r s ,  a c o n t a c t  s u r f a c e  ( I ) ,  whe re  T = b and t h e r e  i s  no a b s o r p t i o n ,  and a s u b l a y e r  ( I I ) ,  
where  t h e  r a d i a t i o n  i s  a b s o r b e d .  

We can  s o l v e  t h e  p r o b l e m ,  a s  d e s c r i b e d  i n  Sec .  3,  w i t h o u t  d i v i d i n g  t h e  b lown r e g i o n  
i n t o  two s u b l a y e r s  ( a s  i s  done  a l s o  w i t h  weak r a d i a t i o n ,  when t h e  t r a n s p a r e n t  r e g i o n  I i s  
p r a c t i c a l l y  a b s e n t ) .  However ,  we can  a c c e l e r a t e  t h e  s o l u t i o n  and  i m p r o v e  t h e  c o n v e r g e n c e  
i f  we c a r r y  o u t  t h e  n u m e r i c a l  s o l u t i o n  o n l y  up t o  T = b ,  and  t h e n  u s e  t h e  a n a l y t i c a l  s o l u -  
t i o n  g i v e n  i n  Sec .  2. H e r e  a s  b o u n d a r y  c o n d i t i o n s  f o r  t h e  a n a l y t i c a l  s o l u t i o n  we t a k e  t h e  
values of the quantities ul(h) , f0(A), T0(A ) = b, where A is determined from the condition 
T0(A) = b during the solution process. 

The results of the numerical calculation are presented in Fig. i. The increase of f0(~) 
in the absorption zone is reminiscent of acceleration of a gas in a flame front. It can be 
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Fig. 3. Distribution of the parameters in the blown layer, ob- 
tained numerically [I) u1(~); 2) f0(~)] and by the approximate 
method [3) u1(~); 4) f0(~)]- 

Fig. 4. Position and thickness of the absorption zone (inter- 
cept). 

seen that the radiation is absorbed in a relatively narrow zone. The solutions on the left 
and right of this absorption zone behave analogously to the solutions of Sec. 2. Upon the 
increase of {q~{ for some time I0(0) z 0, after which it begins to increase sharply. Because 
of this the solutions presented in [6] can be used only for estimates. The calculations 
performed confirm the validity of the estimates of [6]. 

By varying {q~[ with the other parameters held constant (see Fig. i), we obtain 6({q~ i) 
and A/6(iq~ i) (Fig. 2). 

By varying T w and W for the above parameters we obtain the result that qw increases with 
increase of T w and decreases with increase of W. By lowering the temperature of the blown 
gas we can substantially affect the screening process (see Table i). 

5. Analysis of a series of calculations (see, e.g., Fig. i) indicates a relatively small 
thickness 6abs compared with i of the part of the blown layer in which the temperature and 
the radiative flux vary respectively from i to b and from 0 to i. Here in part of the blown 
layer we have T o = b, I 0 = i and the radiation is not absorbed, and in part T o = i, I 0 = 0. 

We shall find an approximate solution of the problem investigated, taking into account 
that 6abs = 0, and considering the blown layer to consist of two sublayers. 

At the absorption front the energy release rate is q~. We assume that the pressure is 
constant across the blown layer, pl = pll = p~V~(l - e/2) 

The balance relations at the absorption front have the form 

p I V I  = oIIVII ' p l  = pU, Vi~ h I q* Vl~ 
2 + @ p I V  I - -  2 + h " ,  ( 7 )  

where V I, Y II are the gas velocities normal to the absorption front. The system of equa- 
tions (7) reduces to an equation for m: 

In Eq. 

m s - t - d m + e = O ,  m = p I V  i=plIV*1 ' 

d = C~efPZ q*pZ 
R~g(T I + TIl) , e----- Rg(T2 1,__THe) 

(8) we use the relation [6] 

Equation (8) has one real root 
h I - -  h II ~ Cp e f  ( T !  - -  TIi)  �9 

m = A 1 JI- A2,  ,41,9- ---=-- ~ / / - - e / 2  -+-]/(d/3) s + (e/2) 2. 

Thus, from Eqs. 

(8) 

(9) 

(8) and (9) with the unknowns T I, T II, and p we determine the velocities 
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V ~=m19 I -  mRgT I , V u = m / p  n -  mRg Tn 

P P 

T I = T w ,  T t t = b T ~ ,  p=gooV2( l - -e l2 ) .  (10)  

The flow in sublayers I and II is described by the system of equations (3) with T0 = const 
and I o = const and with boundary conditions for sublayer I 

and for sublayer II 

I ! 
~ = 0 : u{ (0) = O, t~o ,fo = V = ,o,W,,./(,>~V~; 

( = l : i ~ ( 1 ) =  V1 .... vl/v~.~o ~ 

The solution is described by Eq. 
give: 

a) for sublayer I 

( 1 1 )  

~tt = O:u]t(O) = ui(1), [~(O) V2-----V~/V=o2; ~ =  1:[~ ~ t l ) = 0 .  (12 )  

( 5 ) ,  and h e r e  t h e  bounda ry  c o n d i t i o n s  (11)  and (12)  

~ [ = , ,  03 

A I 

W ' c 2 = 0 ,  
k o /  (13)  

/ 2f~ \ t i 2  
- t / ( [ ~ t 0 ) _ V 0 [ o  ~(0), A' l / " 

t 9o ) 

b) for sublayer II 

. 2 2~ It it uIt (i)  
- -  A n, c2 - -  

ct = c ~ t  1 ~0 u{(1) - -A u 

oV~ A"-- / 2~ ~1/2 
~II = AU+u)(1) ' k 9~') " 

(14) 

Thus, having [q~[ = q*, Tw, p~, V~, PwVw, R c and using Eqs. (5), (8), (9), (13), and (14), 
we can obtain an approximate analytical solution of the problem. 

The results of numerical solution and approximate theory are compared in Fig. 2 (6(q~)) 
and Fig. (3) (ul, fo). 

The solid curve of Fig. 4 shows the position of the discontinuity, obtained approxi- 
mately. 

It is clear that the less is 6abs, the better will the approximate results agree with 
the exact. Nevertheless, for 6ab s 5 0.2 the results of the numerical and the approximate 
calculations agree not only qualitatively, but also quantitatively (in position of the 
absorption layer the discrepancy is less than 15%, and in displacement thickness it is less 
than 30%). 

The above approximate method is based on the premise that the blown layer consists of 
two sublayers with T o = const, p = const, I = const and that the quantity 6ab s the absorp- 
tion zone thickness, is small. After obtaining the approximate solution one should check 
that the assumptions made correspond to the solution obtained. 

To do this, starting from the approximate solution, one must calculate ~abs' If 6ab s is 
small and the absorption front lies within the blown layer, the solution can be considered 
acceptable. 

To determine 6ab s we assume that between To= 1 and T O = b the temperature varies linearly 
(see Fig. i). Let the absorption zone coincide with the intercept [~i, ~2]- Then from the 
radiative transfer equation and the linearity of T o it follows that: 

lo = c exp [To j" k (p, To) d~], 
b--I 

To - - -  (r - -  r + t .  
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Taking into account that I0(~ 2) = I, we have: 

l o = e x p  T O ~2--~1 ~ ~ 2 - - -  

1o (~) = exp { Top(b--l) 2 6abs}, 

6abs = ~_ - -  El. 

From the  c o n d i t i o n  I0(~  l )  << 1 we de t e rmine  6ab s .  For example,  l e t  I0(~  1) = 10 -n ,  then  

n 2 In 10 n 2 In lO 

where 6 i s  t he  d i sp l acemen t  t h i c k n e s s .  For example,  a comparison of  6abs,num, t he  t h i c k -  
ness  of  t h e  a b s o r p t i o n  l a y e r  c a l c u l a t e d  n u m e r i c a l l y ,  and 6ab s = . .  ob t a ined  by the  above 
method ( f o r  t h e  s e r i e s  of  pa rame te r s  see  Fig .  3) g ives  (n = 2)~ r r  

q*, W/m g 8:abs, num I 6abs, app 

2,385-10~ 
7,155.10~ 
1,908.10 s 

0,12 I 0,166 
0,16 0,176 
0,17 0,193 

The satisfactory agreement of 6abs,nu m and 6abs,ap p shows the validity of the approximate 
method for the region of variation of the parameters examined. We note that the approximate 
method described above can also be applied in the case of a different dependence of the ab- 
sorption coefficient on pressure and temperature, and it is necessary only that k(p, T) be a 
monotonically decreasing function of temperature, that the radiative absorption occur in a 
narrow band and that the absorption cease after the gas reaches the critical temperature Tcr. 

NOTATION 

~, wavelength of the external radiation; p, v, p, h, T, density, velocity, pressure, 
enthalpy and temperature of the gas; x, y, coordinates respectively along the body surface 
and normal to it; m = Vw*/V~'(pw*/p~)112, e = Pm/Ps, small parameters; R c, radius of body 
curvature at the stagnation point; r, distance from the axis of symmetry; v = i, 2, corres- 
ponds to planar and axisym~etric flow; q, radiant energy flux density; I, radiative inten- 
sity; a, angle between the axis of symmetry and the tangent to the body; Rg, gas constant; 
k, absorption coefficient; 6Rc, thickness of the blown layer on the axis oz symmetry; %0, 
optical thickness; Cp, specific heat at constant pressure. Subscripts: ~, .*, s, and w, 
parameters respectively in the incident flow, characteristic, behind the shock wave, and at 
the body. 
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